Korteweg de Vries equation

Korteweg de Vries equation
матем.
уравнение Кортевега де Вриза

English-Russian scientific dictionary. 2008.

Игры ⚽ Поможем сделать НИР

Смотреть что такое "Korteweg de Vries equation" в других словарях:

  • Korteweg–de Vries equation — In mathematics, the Korteweg–de Vries equation (KdV equation for short) is a mathematical model of waves on shallow water surfaces. It is particularly notable as the prototypical example of an exactly solvable model, that is, a non linear partial …   Wikipedia

  • Generalized Korteweg-de Vries equation — In mathematics the generalized Korteweg de Vries equation harvs last=Tsutsumi|first= Masayoshi|last2= Mukasa|first2= Toshio|last3= Iino|first3= Riichi|year=1970 is the nonlinear partial differential equation:partial t u + partial x^3 u + partial… …   Wikipedia

  • Korteweg-de-Vries-Gleichung — Die Korteweg de Vries Gleichung (KdV) ist eine nichtlineare partielle Differentialgleichung dritter Ordnung. Sie wurde 1895 von Diederik Korteweg und Gustav de Vries zur Analyse von Flachwasserwellen in engen Kanälen vorgeschlagen, wurde zuvor… …   Deutsch Wikipedia

  • Ecuación de Korteweg-de Vries — Saltar a navegación, búsqueda La ecuación de Korteweg de Vries o KdV es una ecuación en derivadas parciales que incluye efectos de no linealidad y dispersión a la vez. Físicamente es un modelo que describe, en una dimensión espacial, la… …   Wikipedia Español

  • Équation de Korteweg et de Vries — En mathématiques, l équation de Korteweg et de Vries (KdV en abrégé) est un modèle mathématique pour les vagues en faible profondeur. C est un exemple très connu d équation aux dérivées partielles non linéaire dont on connait exactement les… …   Wikipédia en Français

  • Novikov–Veselov equation — In mathematics, the Novikov–Veselov equation (or Veselov–Novikov equation) is a natural (2+1) dimensional analogue of the Korteweg–de Vries (KdV) equation. Unlike another (2+1) dimensional analogue of KdV, the Kadomtsev–Petviashvili equation, it… …   Wikipedia

  • Diederik Korteweg — Diederik Johannes Korteweg Born 31 March 1848(1848 03 31) Den Bosch …   Wikipedia

  • Dispersionless equation — Dispersionless (or quasi classical) limits of integrable partial differential equations (PDE) arise in various problems of mathematics and physics and are intensively studied in the recent literature (see, f.i., [1] [5]). Contents 1 Examples 1.1… …   Wikipedia

  • Gustav de Vries — (January 22, 1866 ndash;December 16, 1934) was a Dutch mathematician, who is best remembered for his work on the Korteweg–de Vries equation with Diederik Korteweg. He was born on January 22 1866 in Amsterdam, and studied at the University of… …   Wikipedia

  • Camassa–Holm equation — In fluid dynamics, the Camassa–Holm equation is the integrable, dimensionless and non linear partial differential equation:u t + 2kappa u x u {xxt} + 3 u u x = 2 u x u {xx} + u u {xxx}. ,The equation was introduced by Camassa and HolmCamassa Holm …   Wikipedia

  • De Vries — Family name Pronunciation Dutch: [də ˈvris] Meaning The Frisian Region of origin Netherlands Language(s) of origin …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»